References
1. Narisaeva, I. I. Prochnost’ polimernyh materialov. Moskow: Himija, 1987. Print. 2. Bruno, L., G. Felice and L. Pagnotta Elastic characterization of ortotropic plates of any shape via static testing. International Journal of Solids and Structures. Vol. 45. 2008. 908-920. Print. 3. Lasn, K., A. Klauson and F. Chati Experimental determination of elastic constants of an orthotropic composite plate by using lamb waves. Mechanics of Composite Materials. Vol. 47, No. 4. 2011. 435-446. Print. 4. Rickards, R., A. Chate and W. Steinchen Method for identification of elastic properties of laminates based on experiment design. Composites: Part B. Vol. 30. 1999. 279-289. Print. 5. Kolsky, H. Experimental studies of the mechanical behavior of linear viscoelastic solids. Proc. of the 4th Symposium on Naval Structural Mechanics. 1965. 357-379. Print. 6. Nakao, T, C. Tanaka and A. Takahashi Experimental study of flexural vibration of orthotropic, viscoelastic plates. Journal of Sound and Vibration. Vol. 116, No. 3. 1987. 465-473. Print. 7. Nguyen, H. V. and J. Pastor Mechanical behavior of linear viscoelastic composites. A prediction method and experimental testing. Mechanics Research Communications. Vol. 21, No.6. 1994. 565-574. Print. 8. Nettles, A. T. Basic Mechanics of Laminated Plates NASA Reference Publication 1351, 1994. Print. 9. Reddy, J. N. Mechanics of laminated composite plates and shells. Theory and analysis. Florida: CRC Press, 2004. Print. 10. Samul’, V. I. Osnovy teorii uprugosti i plastichnosti. Moskow: Vysshaja shkola, 1982. Print. 11. Timoshenko, S. P. and J. Gud’er. Teorija uprugosti. Moskow: Nauka, 1975. Print. 12. Roylance, D. Laminated composite plates. Massachu-setts Institute of Technology, 2000. Print. 13. Bakhshandeh, K., I. Rajabi and F. Rahimi. Investigation of stress concentration for finite-width ortotropic plate. Journal of Mechanical Engineering. Vol. 54, No. 2. 2008. 140-147. Print. 14. Jong, Th. and A. Beukers Stresses around a pin-loaded hole in an elastically orthotropic or isotropic plate. The Neth-erlands: Delft University of Technology, 1977. Print. 15. Bert, Ch. W. Displacement in a polar-orthotropic disk of varying thickness. Zeitschrift für angewandte Mathematik und Physik ZAMP. Vol. 14. 1963. 101-111. Print. 16. Mansfield, E. H. The bending and stretching of plates. Cam-bridge University Press, 1989. Print. 17. Margetson, J. Circular inclusion in a viscoelastic plate subjected to uniaxial tension. International Journal of Engineering Science. Vol. 9. 1971. 639-650. Print. 18. Kiasat, M. S., H. A. Zamani and M. M. Aghdam. On transient response of viscoelastic beams and plates on viscoelastic medium. International Journal of Me-chanical Sciences. Vol. 83. 2014. 133-145. Print 19. Arshinov, G. A. Jevoljucionnoe uravnenie prodol’nyh uedinjonnyh voln v vjazkouprugoj beskonechnoj plastine i ego tochnoe reshenie. Politematicheskij setevoj jelektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. No. 2. 2003. 102-110. Print. 20. Adamov, A. A., V. P. Matveenko and N. A. Trufanov Metody prikladnoj vjazkou-prugosti. Ekaterinburg: UrO RAN, 2003. Print. 21. Uord, I. Mehani-cheskie svojstva tvjordyh polimerov. Moskow: Himija, 1975. Print. 22. Kapitonov, A. M. and V. E. Red’kin Fiziko-mehanicheskie svojstva kompozicionnyh materialov. Uprugie svojstva. Krasnojarsk: Sib. feder. un-t, 2013. Print. 23. Kravchuk, A. S., V. P. Majboroda and Yu. S. Urzhumcev Mehanika polimernyh i kompozicionnyh materialov. Jeksperimental’nye i chislennye metody. Moskow: Nauka, 1985. Print. 24. Polilov, A. N. Jeksperimental’naja mehanika kompozitov. Moskow: Izd. MGTU im. N. Je. Baumana, 2015. Print. 25. Kalitkin, N. N. Chis-lennye metody. Moskow: Nauka, 1978. Print.